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The solution of some diffusion problems 
by Fourier transform methods 

D. V. EVANS and D. S. RILEY 

Department of Mathematics, University of Bristol, Bristol BS8 ITW, U.K. 

Abstract-Fourier transform methods are applied to a number of problems in which sources of heat move 
steadily over the surface of a fixed heat-conducting medium. The work extends known results for heating 
over semi-infinite surfaces to heating over finite patches. The method of solution is described and illustrated 

by some typical examples of practical interest. 

INTRODUCTION 

THE PROBLEMS considered in this paper are typical of 
ones that arise in various physical situations. They 
belong to a class of problems in which sources of heat 
move steadily over the surface of a fixed medium, or 
equivalently in which there is surface heat transfer at 
a fixed location, past which there is uniform motion 
of fluid or material. Such problems have been studied 
since the early 1900s because of their wide applications 
to metal treatments (e.g. welding), to contaminant 
dispersal and to geophysical phenomena such as aqui- 
fers. Reference may be made to Carslaw and Jaeger 
[l] for a review of earlier work. More recently Caflish 
and Keller [2], Levine [3] and Evans [4] have examined 
the problem of quench front propagation when hot 
bodies (slabs and cylinders) are immersed in cooling 
fluid. 

Most of the previous investigations, however, con- 
centrate on cases where the cooling is taken to occur 
over a semi-infinite length. In contrast, the problems 
considered here are such that the surface heat transfer 
occurs over a finite length. Thus this work extends the 
previous investigations to more realistic and useful 
forms. 

We examine four specific problems : 

(I) The determination of the thermal field in a stead- 
ily moving slab of finite thickness with a uniform 
surface heat input along a strip of finite width 
on the upper surface, lying perpendicular to the 
motion, the remainder of the upper surface and 
the lower surface of the slab being taken to be 
insulated. This problem was first considered by 
Rosenthal [5]. 

(II) The problem as in (I), but with linear radiation, 
or Newton cooling, instead of a uniform heat 
input. The semi-infinite analogue of this prob- 

lem was considered by Caflish and Keller, and 
also Levine. 

(III) The cylindrical version of (II), natiely the 
cooling of a finite section of a steadily moving, 
cylindrical rod by Newton cooling. The cooling 
of a semi-infinite rod was considered by Evans 
[4]. This problem has relevance to the cooling of 
reactor rods. 

(IV) Finally, the problem again as in (I) but with 
Newton cooling on the lower side of the slab, 
instead of it being insulated. This type of prob- 
lem was suggested by Rosenthal, and is of inter- 
est in ship-repair welding. 

In all of these problems the method of solution 
employs Fourier transforms in the longitudinal direc- 
tion enabling the heat equation to be reduced to an 
ordinary differential equation, provided due con- 
sideration is given to the behaviour of the solution at 
large distances. In problems (I) and (IV) this enables 
an explicit solution to be derived for the inverse trans- 
form in the form of infinite series which are easily 
computed. The advantage of the method is that it 
provides the solution directly and avoids the necessity 
of first constructing an explicit source function as in 
Carslaw and Jaeger [l] and Rosenthal [5] and then 
distributing sources appropriately over the slab. Here 
the same result is obtained naturally through the 
Fourier transform technique. The method also has 
the advantage of showing when an explicit solution is 
not possible. This is the case in problems (II) and (III) 
which are extensions of the solutions given by, for 
example, Caflish and Keller [2], Levine [3] and Evans 
[4]. These authors use the Wiener-Hopf technique to 
obtain an explicit, though complicated, solution for 
the mixed boundary-value problems which arise. The 
present technique results in an integral equation over 
a finite region for the unknown temperature dis- 
tribution on the surface of the slab. A Fourier expan- 
sion of the temperature reduces this to an infinite 
system of algebraic equations in the unknown Fourier 
coefficients which is easily computed by truncation. 

FORMULATION OF PROBLEM (II) 

In order to fix ideas we shall present detailed anal- 
ysis of problem (II) and then outline the relevant 
changes for the other three problems. 

Consider a slab of material occupying the space 
IXj < co, 0 < Y d d, moving uniformly in the positive 
X-direction with speed U. The surfaces of the slab 
are insulated except along the finite section Y = d, 
0 < X < I where heat is transferred according to New- 
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NOMENCLATURE 

column vectors defined by (29) 
Fourier coefficients off(x) 
slab thickness ; radius of rod in 
problem (III) 
surface temperature function defined 

by (2% (26) 
defined by (53) 
d46/+4% l), 0 <. x < B 
surface heat transfer coefficient 
thermal conducti~ty 
length of surface heating element 
real and imaginary parts of c, 
Qd/kT,, problem (I); Qd/kTa, problem 

(IV) 
(~~+n~n*)~~*, problems (I) and (II); 
(s~+~,Z)“~, problem (III); (s~+v~)‘~~, 
problem (IV} 
P&let number, ~dl2k ; also denoted 
by Pe in the figures 
dimensionless coordinates 
Biot number, hd/k 
coefficient matrices, defined by (29) 
Green’s function 
modified Bessel functions 

Jo, J, Bessel functions 

Q heat flux 
T dimensional temperature 
u slab speed 
A’, Y dimensionless coordinates 
Z set of integers. 

Greek symbols 
u Fourier transform variables 

(5 defined by (30) 

B length ratio, l/d 

Y (ct*+s*y 

&II constants (so = f;s.= l,n> 1) 

cp modified dimensionless temperature 

[see (lo)1 

T* 

thermal diffusivity 
zeros of J, 

11, positive roots of v tan v = B 
Q, Fourier transform of #. 

Subscripts 

; 
ambient 
final 

i initial. 

- 

ton’s law of cooling. Thus, if T(X, Y) denotes the we obtain 
steady-state temperature of the slab, we have 

U;;=&*T O<Y<d, I~<ox 

2sg 2= V2@ (6) 
01 

dx 

ae 
aT 
ar=O Y=d, Xc0 and X>I (2) 

-=o y=l, x<o, x>/I 
ay 

(7) 

-k;=h(T-T,) Y=d, O&l-XlGZ (3) 
ae 
-+BBB=O y=l, O<x<fl 
ay 

a 
& = 0 y = 0, 1x1 < m 

Here k and u denote, respectively, the thermal con- plus appropriate boundary conditions as /xl-+ 00 ; 

ductivity and diffusivity of the material, T, is the here B is the Biot number, 2s is the Peclet number and 

ambient temperature in the cooling atmosphere and V2 denotes the dimensionless Laplacian. 

h is a surface heat transfer coefficient. In addition 

T-+T, as X-+---co, T+ T, as x-+00 (5) 
METHOD OF SOLUTION 

where T, and Tr denote the initial and final tempera- 
tures. In the above V2 denotes the two-dimensional 
Laplacian. On introducing 

tx,y)= d-‘(X, Y), Q= (T-Ta)I(T,-CT,) 

The key to the solution is the initial transfo~ation 

B(n, y) = 1 + eWx, y) (10) 

which produces a boundary-value problem for Cp well 
/I = I/d, s = Ud/2u, B = hd/k suited for the application of Fourier transforms in the 
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x-direction. It follows that 4 satisfies 

(V2-sz)~=O in lxl<oo, O<y<l (11) 

w -=o y=l, x<o, x>j? 
ay 

a4 - -B(rb+e-Y=g(x) y=l, 0~~~8 au- 
(13) 

a4 - = 0 y = 0, 1x1 < 03 ay (14) 

f$=o(e-sx) as x-+--co (IS) 

d=G(e-sx) as x-+co. (16) 

A consideration of the behaviour as x -+ - co of poss- 
ible solutions of (11) subject to insulation boundary 
conditions on y = 0,l shows that (15) may be replaced 

by 

Qt = G(P) as X-+-GO. Wa) 

Thus 4 = O(e-S~~) as lx/-+ co, which ensures that the 
Fourier transform 

s 

m 
W&y) = 4(x, Y) exp (iax) dx (17) 

-m 

with inverse 

rb(x,y) = & 
s 

_m ~(ff,~)exp(-iax)da (18) 
m 

exists in the strip 9 : 1Im al < s of the complex a-plane. 

FOURIER TRANSFORM OF THE EQUATIONS 

AND BOUNDARY CONDITIONS 

The transform of (11) is 

d2tf, 
--y2Q=0, atz.9 
dy2 

where y = (cx~+,Y~)‘/~ such that y = a when s = 0. The 
solution of (19) satisfying the appropriate boundary 
conditions on y = 0 and y = 1 is 

coshyy @ 
w&Y) = ~ 

s ysinhy e 
eibx’ g(x’) dx’ f20) 

and 4(x, y) follows from (18) : 

On using (10) and (13), we find that 

O(x,y) = 1-B 
s 

‘0(x’,l)G(x+x’,y)dx’ (22) 
0 

where 

e-i@+~~)~coshyy 

G(x,Y) =& T - ysinhy s da (23) 
m 

= esx z OD Ene-‘+--l)=cosFZ7ty (24) 

n=O 

with so = l/2 and E, = 1, n 2 1 and s, = (s2+ n*7~~)~‘~. 
The series representation (24) has been obtained by 
contour integration. Thus 0(x, y) may be calculated 
from (22) once we have determined @(x, I), 0 < x < /. 
Letting 

8(x, 1) = esxf(x), 0 < x < @ (25) 

and evaluating (22) at y = 1, we obtain an integral 
equation forf(x) : 

S(x) = e+-B O’~(x’)~~O~exp(-~,,lx-x’l)dx’ 
s 

(26) 

where we have used (24). 

SOLUTION OF THE INTEGRAL EQUATION 

To solve (26) it is convenient to take a Fourier 
representation of f(x), and generate an infinite set 
of equations for the Fourier coefficients. Thus, on 
writing 

f(x) = 2 c, exp (ia,x), 0 < x < 0, (27) 
m=--m 

with F_, = c, and a, = 2nm//I, and on using the 
orthogonality properties of (exp (ia,x)l m E Z} on 
[0, /I], we find that the Fourier coefficients satisfy 

where 

Cp=b, Dq=b (28) 

a,(1 -eCB) 
b, = _ s(l-e-“9 

b: = - @‘+a3 9 1 
(s2+cz2) * 

Here there is no implied summation convention, pnt 
and qm denote the real and imaginary parts of c,, S, 
denotes the Kronecker delta and 

a,=l+ZBf” 
.=os,z+lz,?’ 

The matrix equations (28) may be truncated and 
solved numerically yielding approximations to p and 
q, and hence c,,,, m = 0, 1,. . . . Having found c,, f(x) is 
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known from (27) and hence 0(x, y) may be calculated g(x) = q e-“” ; (21) is easily evaluated and 0(x, y) deter- 
from (22) using (25). 

SOLUTION OF PROBLEM (II) 

It is found that for x < 0 : 

x {s,p, -cl,q,}(eS+-fl) -eSqX} 

x (- 1)“cosn~y. 

ForO<.x<@: 

x { ILZL + amqnl e-s,r + [wb -add 

x e”J’-fi)+s,[q, sin (a,.~) 

--pm cos (a,x)]} ( - 1 >” cos nny. 

Forx>@: 

X {s& +u,q.} {e+nx -eVJP-x)} 

x (- l)“cosn?ry. 

mined. 

Solutiopl ofproblem (I) 
Forx<O: 

co &J _ 1)” e(s+3.r 

QkY) = 1+q c $ ($+$ > 

?I=* n n 

x{l-e-(“+“n)s}cosnny. 

ForO,<x</?: 

In order to dete~ine the temperature ~st~bution 
in the finite analogue of the problem considered by 
Caflish and Keller, i.e. problem (II), the Biot number 
B, P&let number 2s and aspect ratio /l must first be 
specified, then equations (28) solved for P,,, and qm, 
and finally the expressions (3 1) evaluated. 

We now consider the changes that are necessary in 
the above analysis to deal with the other problems. 

+ f (-lf”e@-‘.)“cosnlcy 

!I= 1 Kt(s--sJ 

(31) 

Forx>& 

where q = Qd/kT,,* and (13) becomes 

Uniform surface heat input along afinite strip 
The specification of this problem is as in ( F(5), 

except that (3) is replaced by 

PROBLEM (I) 

k&=Q Y=d, O<XGl (32) 

where Q is the constant flux of heat transferred into 
the slab (if Q z=- 0). In consequence, (8) now becomes 

.!?=qe-“’ y= 1, 
ay 

OGXX,<. (34) Thus, 

Thus #(x,y) is again given by (21) but with 

*Note that T, is redundant in this case and may be set 
equal to zero. 

Kw)=lf4 ;+ c $($_$) 

i 

m (_. l)“e’“-“J” 

n=, n n 

x [l -e-(“-@]cosn’lly 
i 

(35) 

These results are the same as those of Rosenthal, 
except for a change in notation. 

PROBLEM (ill) 

Newton cooling of a finite section of a moving cylinder 
Here (l)-(S) is the correct specification providing 

that we re-interpret X and Y as axial and radial 
cylindrical polar coordinates, respectively, and we 
take 

672 a2 1 a 
v2=@+ay2+yay. 

The analysis also follows closely, except that Bessel 
functions naturally arise in this case, but the con- 
clusions are the same regarding condition (15). The 
transform of the governing equation becomes 

d*@ 1 dc9 
_+----~2~=0 
dy J’ dv 

which has a bounded solution, satisfying the surface 
conditions, given by 

Zo(YY) B 
@(a, Y) = __ s YZ,(Y) 0 

eiax' g(x') dx’. (37) 

#(x, y) = k 
s s 
o’ g(x’) _mm $$ eia(x’-x) dudx’ (38) 

and f.J(x,y) is given by (22), with G(x, y) now defined 
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by 

(39) 

Again, by using contour integration, we may obtain 
a series representation for G : 

where A,, n=0,1,2 ,... are the zeros of J, and 
s, = @2+;1,2)‘/*. The analysis now goes through 
exactly as before and the results for 6(x,y) are given 
by (3 1) except that (- 1)” cos nary must be replaced by 
J&,y)/J&) and s, has the definition given above. 

PROBLEM (IV) 

Uniform surface heat input along one side of a strip 
with Newton cooling alung the other side 

In this case (3), (4) and (5) respectively, become 

aT 
kay = Q, Y=d, O<X<l (41) 

kg = h(T- Tg) 

Y=O, pq<co (42) 

T+T, as ]fl+co. (43) 

In this case T is redundant and, for convenience, we 
set it equal to 2T,. Thus (8) and (9), respectively, 
become 

ae 
ay=q y=l, o<x<jI 

with q = Qd/kT,, and 

%%I=0 y=o, Ix]<00 
ay 

(45) 

with B = hd/k. Furthermore (13) and (14) become 

a+ 

ar=qe-SX y 
=l, O<xQ/!l 

J# --BCj=O y=o, ]xl<co 
ay 

where now 

(46) 

(47) 

#(x.Y) = e-“W,y). (48) 

The solution of (19) satisfying the modified boundary 
conditions on y = 0 and y = 1 is 

(D(a 

, 

y) = dY wsh YY + a sinh YY) 
y(y sinh y + 2 cash y) s 

’ eita +is)x dx 

. (4% o 

Hence, 

where 

@(x,y) = q OD rj(x-2, y)dx’ 

G(x, y) = J- s O” (y cash yy + B sinh yy) -- 
2n -m y(ysinhy+Bcoshy) 

(v, cos v,y+ B sin v, y) -_ 
f’cv) = (B+l)sinv,+v,cosv,’ 

(50) 

(51) 

(52) 

(53) 

Herev,,n= I,2,... are the positive roots of the tran- 
scendental equation v tanv = B, and (52) has been 
determined by evaluating (51) by contour integration. 

Again it is straightforward to determine 0(x, y) from 
(50) and (53). 

Solution of problem (ZVJ 

w? Y) 

I X [l -e-@+sJfl], x < 0 

I 
q 

x [e@-@- I], x > /!A (54) 

Here s, = (s2 + vi) ljz. 

RESULTS AND DISCUSSION 

In each of the problems considered there are a num- 
ber of different parameters invoived. Rather than pre- 
sent an exhaustive study of the variation in tem- 
perature over a complete parameter range, we content 
ourselves with a few representative curves for each 
case which illustrate the more interesting features of 
the problem. 

Problem (I) describes the distribution of tem- 
perature in a steadily moving slab of finite thickness 
where a uniform surface heat input is applied along a 
finite width strip on the upper surface. The results are 
given by equation (35) in terms of the dimensionless 
heat input q = Qd/rcT,, the aspect ratio /I = I/d and 
the P&let number 2s = ZJd/K. The expressions given 
by (35) can be shown to agree with the work of Rosen- 
thal [5] although his conclusion concerning the 
maximum temperature [5, p, 8531 is at variance with 
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Pe= 03 

x 

FIG. 1. Variation of the surface temperature around the section of the slab with uniform surface heat flux. 
The slab surface is insulated away from the heated section and p = 1 .O. 

ours. Thus Fig. 1 shows the variation of a normalised 
temperature on the upper surface [0(x, I)- l]/q with 
distance for the case j? = 1 and for a range of increas- 
ing P&let number. As expected, as 2s increases the 
heat is convected downstream more rapidly, pre- 
venting a build up of heat and resulting in a lower 
maximum for 0(x, 1). In all cases the maximum occurs 
at an interior point of the heated strip, in contrast to 

the suggestion of Rosenthal that it will always occur 
at the downstream end of the strip. This maximum 
shifts to the downstream end of the heated strip as 
2s + co. The final downstream value of normalised 
temperature is /?/2s in agreement with a simple global 
conservation of energy calculation. 

Figures 2 and 3 give contour plots of (t?-- 1)/q 
throughout the slab for two different values of P&let 

x 
c 

FIG. 2. Contour plots of (e- 1)/q for problem (I) with Pe = 1 .O and 1 = 1 .O. 

x 

01 I I I \ 1 

FIG. 3. Contour plots of (0 - 1)/q for problem (I) with Pe = 10.0 and /I = 1 .O. 
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FIG. 4. Variation of the sputtering temperature of the slab with Biot number for B = 1.0 and various P&let 
numbers-problem (II). 

number. Again it is clear how the isotherms are dis- 
torted due to convective effects. In all contour plots 
no numbers are shown as we wish merely to illustrate 
qualitatively the distortion of the thermal field. 

In Problem (II) the moving slab is being cooled over 
a finite strip by a linear radiation law, or Newton’s law 
of cooling. The solution, given by equations (28) and 
(31) extends the results of Caflish and Keller [2] and 
Levine [3] where cooling takes place over a semi- 
infinite strip. Problem (III) is a simple extension to a 
moving circular cylinder rather than a slab and the 
solution, which follows similar lines to Problem (II), 
extends the solution given by Evans [4] for the semi- 
infinite case. 

Results for Problem (II) are shown in Fig. 4 where 
the variation in what Levine calls the sputtering tem- 

perature, that is, the temperature on the upper side of 
the slab at the point of entry to the cooling region, is 
shown, as a function of Biot number, B = hd/k, for 
different values of 2s, and for /3 = 1. It can be seen 
that the sputtering temperature falls monotonically as 
B increases, whilst for fixed B, it increases with the 
P&let number. This is to be expected since as the 
speed of the slab increases there is less time for cooling 
to take place. The corresponding curves for Problem 
(III) are not shown as the differences between the two 
cases are so small. For example with the P&let number 
based on the radius of the cylinder the differences in 
sputtering temperature in the two problems for the 
parameter ranges shown in Fig. 4 are of the order of 
1%. 

It is of interest to compare the results in Fig. 4 with 

x ) 

I 2 

FIG. 5. Isotherms for /I = 1.0, B = 1.0 and Pe = l&-problem (II). 
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0 1 
FIG. 6. Isotherms for p = 1 .O, B = 1.0 and Pe = lO.O-Problem (II). 

the curves given by Evans for the semi-infinite case. 
As expected each of the curves for given P&let number 
2s is higher than the corresponding curve for the semi- 
infinite case where more cooling takes place. Com- 
putations for increasing/l confirm that the results tend 
to the semi-infinite case. Contour plots of constant 
temperature for the moving slab are shown in Figs. 5 

and 6 for 2s = 1 and 10, respectively. .In each case 
p = 1 and the Biot number B = 1. In contrast to 
Problem (I) heat is now being extracted over the strip 
0 < x < 1 and it is clear that the minimum tem- 
perature occurs at an interior part of the cooled strip. 
For the larger value of 2s cooling is inhibited and the 

minimum shifts towards the downstream end of the 
strip. 

The solution to Problem (IV) computed from (54) 
is illustrated in Figs. 7-9. Thus Fig. 7 shows how the 
temperature on the heated strip, normalised by q, 
varies with distance, again for fixed /l = 1, B = 1 and 
for various values of P&let number. Again the 
maximum temperature is attained at an interior point 
of the strip with the larger values corresponding to 
smaller P&let number but downstream of the strip the 
situation is more complicated with the temperature 
curves overlapping. (See ref. [ 1, p. 270, Fig. 341 where 
a similar phenomenon occurs.) Contour plots of con- 

Pe 
1.0 

ga 
10.0 

FIG. 7. Variation of the surface temperature around the section of the slab with uniform surface heat flux. 
The lower slab surface is cooled by linear radiation with B = 1.0 and B = 1.0. 

I \. 

FIG. 8. Contour plots of 8/q for p = 1.0, B = 1.0 and Pe = l.O-Problem (IV). 
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0 , * I 

FIG. 9. Contaur plots of B/q for B = 1 .O, B = 1 .O and Pe = lO.&Problem (IV). 

stant temperature are shown in Figs. 8 and 9 for values 
of /l = 1, B = 1 and P&let numbers of 1 and 10, 
respectively. It is clear from Fig. 8 that for 2s = 1 
the thermal distribution is almost symmetrical (as it 
would be if 2s = 0) whereas from Fig. 9 where 2s = 10 
an appreciable amount of heat is being convected 
away. 

CONCLUSION 

A variety of problems concerning heating or 
cooling of moving materials have been considered, all 
of which have relevance to industrial applications. 
Fourier methods have been used to derive either, 
explicit solutions in the case of Neumann problems, 
or, for mixed boundary-value problems, a semi- 
explicit solution involving the numerical solution of 
an infinite system of linear equations. Representative 

graphs illustrating the main features of the solutions 
have been presented in each case, though the forms 
of the solutions do make it possible to consider more 
detailed aspects of the thermal distribution, if 
required. 
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LA SOLUTION DE QUELQUES PROBLEMES DE DIFFUSION PAR LES 
METHODES DE T~NSFO~ATION DE FOURIER 

R&urn&-Les methodes de transfo~ation de Fourier sont appliquees a un nombre de problemes dans 
lesquels des sources de chaleur se deplacent a vitesse con&ante sur la surface d’un milieu lixe, conducteur 
de la chaleur. Le travail elargit des r&.ultats connus pour le chauffage sur des rbseaux finis. La mirthode de 

resolution est d&rite et illustree. par quelques exemples typiques d’interet pratique. 

DIE L&SUNG VON DIFFUSIONSPROBLEMEN MIT HILFE DER 
FOURIER-T~NSFORMATION 

Z~~rnrnanfa~ng-Fourier-Transfo~ationsverf~ren werden auf eine Reihe von Problemen angewandt, 
in denen Warmequellen stetig iiber die Oberflache eines festen, warmeleitenden Mediums wandem. Die 
Arbeit geht iiber bekannte Ergebnisse fiir die Beheizung von halbunendlichen Oberlhichen hinaus und 
ermiiglicht die Berechnung der Beheizung von endlichen Teilstiicken. Das Ldsungsverfahren wird be- 

schrieben und anhand einiger typischer Beispiele, die von praktischem Insteresse sind, erllutert. 

PElBEHWE HEKOTOPblX 3AAAci fiMtD#Y3MR C HOMOlBbIO 
~PEOEPA3OBAH~~ @YPbE 

A~~TauHa-MeTo~ npeo6pasosausx @,ypbe IIpKMeH&iMbt K PRAY 3aAaV, B KOTOpbIX IICTOYH&iK Tenna 

PaBHOMepHO ABNmeTCIi HaA nOBepXHOCTbl0 HenOXBWKHOti TfWIOnpOBOAHOii CpeAbI. B pa6ore U38eCT- 

Hble pe3ynbTaTbI n0 Harpen)’ CBepXy nOny6eCKOHeuHbtX TW, PaCnpOCTpaHeHbI Ha C,,yWfi HarpeBZ, KOHW- 

nblx o6nacren. Meron pemenns onrican u npoennrocrpepoeari TmmHbmm npnMepaMri, nh4erournt..iu 
nparcrmiecxnii mirepec. 


